Lesson 14. The Points-After-Touchdown Problem

1 The problem

- In an NFL football game, after scoring a touchdown, a team is given the option to try for:
- a 1-point conversion: 1 extra point by a field goal from the 15-yard line, or
- a 2-point conversion: 2 extra points by advancing the ball into the end zone from the 2-yard line
- Whether to "go for 2 " is a classic debate - a few discussions on the topic:
- https://fivethirtyeight.com/features/more-nfl-teams-are-going-for-two-just-as-they-should-be/
- https://www.espn.com/nfl/story/_/id/28100383/going-2-8-points-why-nfl-teams-keep-doing-why-analytics-backs-up
- Adding to the debate: in 2015, 1-point attempts were moved from the 2-yard line to the 15 -yard line
- Conversion success rates from the 2014-2017 regular seasons (from http://www.pro-football-reference.com/):

	2014	2015	2016	2017
1-point conversion success rate	0.993	0.942	0.936	0.940
2-point conversion success rate	0.483	0.479	0.486	0.451

- Based on the current score and time remaining, should a team "go for 1 " or "go for 2 " in order to maximize the probability that it wins the game?
- How does the 2015 rule change affect a team's optimal conversion strategy?
- Let's try to answer these questions by modeling this problem as a stochastic dynamic program
- We will be roughly following this paper:
H. Sackrowitz (2000). Refining the point(s)-after-touchdown decision. Chance 13(3): 29-34.

2 Data

- Two teams: A and B
- Assume that we (the decision-makers) are Team A
- Suppose we have the following data:

$$
\begin{aligned}
T & =\text { total number of possessions } & & \\
p_{1 n} & =\operatorname{Pr}\{1 \text {-pt. conv. successful for Team } n \mid 1 \text {-pt. conv. attempted by Team } n\} & & \text { for } n=\mathrm{A}, \mathrm{~B} \\
p_{2 n} & =\operatorname{Pr}\{2 \text {-pt. conv. successful for Team } n \mid 2 \text {-pt. conv. attempted by Team } n\} & & \text { for } n=\mathrm{A}, \mathrm{~B} \\
b_{1} & =\operatorname{Pr}\{1 \text {-pt. conv. attempted by Team B }\} & & \\
b_{2} & =\operatorname{Pr}\{2 \text {-pt. conv. attempted by Team B }\} & & \\
t_{n} & =\operatorname{Pr}\{\text { TD by Team } n \text { in 1 possession }\} & & \text { for } n=\mathrm{A}, \mathrm{~B} \\
g_{n} & =\operatorname{Pr}\{\text { FG by Team } n \text { in } 1 \text { possession }\} & & \text { for } n=\mathrm{A}, \mathrm{~B} \\
z_{n} & =\operatorname{Pr}\{\text { no score by Team } n \text { in 1 possession }\} & & \text { for } n=\mathrm{A}, \mathrm{~B} \\
r & =\operatorname{Pr}\{\text { Team A wins in overtime }\} & &
\end{aligned}
$$

- What is the relationship between b_{1} and b_{2} ?

$$
b_{1}+b_{2}=1
$$

- What is the relationship between t_{n}, g_{n} and z_{n} ?

$$
t_{n}+g_{n}+z_{n}=1
$$

- What is the probability that Team B scores 0 after a touchdown?

3 The stochastic DP

- Stages:

$$
\begin{array}{rll}
t=0,1, \ldots, T-1 & \leftrightarrow & \text { end of possession } t \\
t=T & \leftrightarrow & \text { end of game }
\end{array}
$$

- For our purposes, a possession ends when a team scores (TD or FG), or loses possession without scoring
- States:

$$
\begin{array}{lll}
(n, k, d) \leftrightarrow & \text { Team } n \text { 's possession just ended } & \text { for } n \in\{\mathrm{~A}, \mathrm{~B}\} \\
& \text { Team } n \text { just scored } k \text { points } & \text { for } k \in\{0,3,6\} \\
& \text { Team A is ahead by } d \text { points } & \text { for } d \in\{\ldots,-1,0,1, \ldots,\} \\
& & d<0 \Rightarrow \text { Team } B \text { ahead by } d \text { prints }
\end{array}
$$

- Value-to-go function:
$f_{t}(n, k, d)=$ maximum probability that Team A wins when in state (n, k, d) at the end of possession t

$$
\text { for } n \in\{\mathrm{~A}, \mathrm{~B}\}, k \in\{0,3,6\}, d \in\{\ldots,-1,0,1, \ldots\}
$$

- Allowable decisions x_{t} at stage t and state (n, k, d) :

$$
\begin{array}{ll}
x_{t} \in\{1,2\} & \text { if } n=\mathrm{A} \text { and } k=6 \\
x_{t}=\text { none } & \text { if } n=\mathrm{A} \text { and } k \in\{0,3\} \\
x_{t}=\text { none } & \text { if } n=\mathrm{B} \text { and } k \in\{0,3,6\}
\end{array}
$$

- We need to consider transitions from the following states:

$$
\begin{array}{lll}
(\mathrm{A}, 6, d) & (\mathrm{A}, 3, d) & (\mathrm{A}, 0, d) \\
(\mathrm{B}, 6, d) & (\mathrm{B}, 3, d) & (\mathrm{B}, 0, d)
\end{array} \quad \text { for all } d
$$

- Since our objective is to maximize the probability of winning, we set all the contributions in stages $t=0,1, \ldots, T$ 1 to 0 , just like in the investment problem in Lesson 13

$\underline{\mathrm{A}}$	$\underline{\mathrm{B}}$
TD	no conv.
FG	no conv.
no no	
score	conv.

